- CB100:突然変異はまれである
- CB101:大半の突然変異は有害である
- CB101.1:突然変異は事故だから、事故では何も生まれない
- CB101.2:突然変異は既存品の組み換えで、新しいものはない
- CB102:突然変異はランダムノイズであり、情報を加えない
- CB102.1:Dawkinsは情報が増える例を示していない
流れとしては、「突然変異はほとんど起きない」-->「起きても有害」-->「有益だったとしても突然変異は既存品の組み換えで、新しいものはない」となっている。
Claim CB100:[backup]
Evolution requires mutations, but mutations are rare.
進化は突然変異を必要とするが、突然変異はまれである。
Source:
Morris, Henry M. 1985. Scientific Creationism. Green Forest, AR: Master Books, pg. 55.
Response:
Very large mutations are rare, but mutations are ubiquitous. There is roughly 0.1 to 1 mutation per genome replication in viruses and 0.003 mutations per genome per replication in microbes. Mutation rates for higher organisms vary quite a bit between organisms, but excluding the parts of the genome in which most mutations are neutral (the junk DNA), the mutation rates are also roughly 0.003 per effective genome per cell replication. Since sexual reproduction involves many cell replications, humans have about 1.6 mutations per generation. This is likely an underestimate, because mutations with very small effect are easy to miss in the studies. Including neutral mutations, each human zygote has about 64 new mutations (Drake et al. 1998). Another estimate concludes 175 mutations per generation, including at least 3 deleterious mutations (Nachman and Crowell 2000).
非常に大きな突然変異はまれであるが、突然変異はありふれている。ウィルスではゲノム複製1回あたり約0.1回、微生物ではゲノム複製1回あたり0.003回の突然変異が起きる。高等生物の突然変異率は、生物より大きく異なる。ただし、ジャンクDNAなど大半の突然変異が中立的なゲノムの部分では、突然変異率はゲノム複製1回あたり0.003である。有性生殖では多くの細胞が複製されるので、人間では世代あたり1.6回の突然変異が起きる。ほんの小さな影響しか与えない突然変異は研究過程で見落としやすいので、この突然変異率くの値は、おそらく過小評価である。中立的な突然変異を含めると、人間の接合子は64個の新しい突然変異を持っている[Drake et al.1998]。また別の推定では、少なくとも3つの有害な突然変異を含む175の突然変異が世代あたりに起きる[Nachman and Crowell 2000]。
Links:
- Harter, Richard. 1999. Are mutations harmful? http://www.talkorigins.org/faqs/mutations.html
References:
- Drake, J. W. et al. 1998. See below.
- Nachman, M. W. and S. L. Crowell. 2000. Estimate of the mutation rate per nucleotide in humans. Genetics 156(1): 297-304.
Further Reading:
- Drake, J. W., B. Charlesworth, D. Charlesworth, and J. F. Crow. 1998. Rates of spontaneous mutation. Genetics 148: 1667-1686. (technical)
Claim CB101:[backup]
Most mutations are harmful, so the overall effect of mutations is harmful.
大半の突然変異は有害である。なので突然変異の効果全体は有害である。
Source:
Morris, Henry M. 1985. Scientific Creationism. Green Forest, AR: Master Books, pp. 55-57.
Watchtower Bible and Tract Society. 1985. Life--How Did It Get Here? Brooklyn, NY, pg. 100.
Response:
- 大半の突然変異は中立である。Nachman and Crowell[2000]は人間一世代あたり175の突然変異があり、そのうち3つが有害であると推定している。それらのうち有意な効果を持つものの大半は有害であるが、有益な突然変異の比率は思ったより多い。E. coliの実験では、新たな突然変異150のうち1程度、機能する突然変異10のうち1程度が有益である[Perfeito et al. 2007]。
- 有益な突然変異は広く観察されている。病原菌の抗生抵抗や害虫の農薬抵抗などには、あまりに有益な突然変異がありすぎて問題になっている[e.g., Newcomb et al. 1997; これらは既存の変異の選択ではない]。それらは実験室の集団で繰り返し観察可能である[Wichman et al. 1999). 他の例は以下の通り:
- 突然変異によってナイロンを消化できるようになった細菌{Prijambada et al. 1995]。
- 植物育種家は突然変異を誘導し、有益なものを選択する[FAO/IAEA 1977]。
- 人間のある突然変異はAIDS抵抗[Dean et al. 1996; Sullivan et al. 2001]や心臓病抵抗[Long 1994; Weisgraber et al. 1983]を与えた。
- 人間の突然変異は骨格を強化した[Boyden et al. 2002]。
- トランスポゾンは一般的なもので、特に植物ではそうであり、有益な多様性を実現するのを助ける[Moffat 2000]。
- 試験管内での突然変異と選択は、リボザイムのようなRNA分子の発達した機能を進化させるのに使える[Wright and Joyce 1997]。
- 突然変異が有益かどうかは環境に依存する。ある環境のもとで、その生物を助けた突然変異が、別の環境では有害になるかもしれない。環境が変われば、非適応的だった変異が突如として有益になるかもしれない。環境は常に変化しているので、たとえ一部の変異が他の変異より、うまくやっていけなくても、変異は生物集団の生存を助ける。変化した環境のもとで有益な突然変異が起きたら、一般に、その集団を急速に席巻する[Elena et al. 1996]。
- ある環境では高い突然変異発生率は有利に働く。抗生物質や他のストレスが淘汰圧と変異率を増大させた場合、突然変異しやすい緑膿菌(Pseudomonas aeruginosa)の株は、嚢胞性線維症(cystic fibrosis)の患者の肺でよく見つかる[Oliver et al. 2000)]。
- いかなる有益な突然変異の存在も、"若い地球の創造論"モデルの反証となる[Morris 1985, 13]。
Links:
- Williams, Robert. n.d. Examples of beneficial mutations and natural selection.
- Williams, Robert. n.d. Examples of beneficial mutations in humans.
References:
- Boyden, Ann M., Junhao Mao, Joseph Belsky, Lyle Mitzner, Anita Farhi, Mary A. Mitnick, Dianqing Wu, Karl Insogna, and Richard P. Lifton. 2002. High bone density due to a mutation in LDL-receptor-related protein 5. New England Journal of Medicine 346: 1513-1521, May 16, 2002.
- Dean, M. et al. 1996. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273: 1856-1862.
- Elena, S. F., V. S. Cooper and R. E. Lenski. 1996. Punctuated evolution caused by selection of rare beneficial mutations. Science 272: 1802-1804.
- FAO/IAEA. 1977. Manual on Mutation Breeding, 2nd ed. Vienna: International Atomic Energy Agency.
- Long, Patricia. 1994. A town with a golden gene. Health 8(1) (Jan/Feb.): 60-66.
- Moffat, Anne S. 2000. Transposons help sculpt a dynamic genome. Science 289: 1455-1457.
- Morris, Henry M. 1985. Scientific Creationism. Green Forest, AR: Master Books.
- Nachman, M. W. and S. L. Crowell. 2000. Estimate of the mutation rate per nucleotide in humans. Genetics 156(1): 297-304.
- Newcomb, R. D. et al. 1997. A single amino acid substitution converts a carboxylesterase to an organophosporus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Science USA 94: 7464-7468.
- Oliver, Antonio et al. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251-1253. See also: Rainey, P. B. and R. Moxon, 2000. When being hyper keeps you fit. Science 288: 1186-1187. See also: LeClerc, J. E. and T. A. Cebula, 2000. Pseudomonas survival strategies in cystic fibrosis (letter), 2000. Science 289: 391-392.
- Perfeito, Lilia, Lisete Fernandes, Catarina Mota and Isabel Gordo. 2007. Adaptive mutations in bacteria: High rate and small effects. Science 317: 813-815.
- Prijambada, I. D., S. Negoro, T. Yomo and I. Urabe. 1995. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Applied and Environmental Microbiology 61(5): 2020-2022.
- Sullivan, Amy D., Janis Wigginton and Denise Kirschner. 2001. The coreceptor mutation CCR5-delta-32 influences the dynamics of HIV epidemics and is selected for by HIV. Proceedings of the National Academy of Science USA 98: 10214-10219.
- Weisgraber K. H., S. C. Rall Jr., T. P. Bersot, R. W. Mahley, G. Franceschini, and C. R. Sirtori. 1983. Apolipoprotein A-I Milano. Detection of normal A-I in affected subjects and evidence for a cysteine for arginine substitution in the variant A-I. Journal of Biological Chemistry 258: 2508-2513.
- Wichman, H. A. et al. 1999. Different trajectories of parallel evolution during viral adaptation. Science 285: 422-424.
- Wright, M. C. and G. F. Joyce. 1997. Continuous in vitro evolution of catalytic function. Science 276: 614-617. See also: Ellington, A. D., M. P. Robertson and J. Bull, 1997. Ribozymes in wonderland. Science 276: 546-547.
Further Reading:
- Harter, Richard. 1999. Are mutations harmful?
- Peck, J. R. and A. Eyre-Walker. 1997. The muddle about mutations. Nature 387: 135-136.
CB101.1:[backup]
Mutations are accidents, and things do not get built by accident.
突然変異は事故であり、事故からは何も生まれない。
Source:
Watchtower Bible and Tract Society. 1985. Life--How Did It Get Here? Brooklyn, NY, pg. 102.
Morris, Henry M. 1985. Scientific Creationism. Green Forest, AR: Master Books, p. 55.
Response:
- There is more to evolution than mutation. A small percentage of mutations are beneficial, and selection can cause the beneficial mutations to persist and the harmful mutations to die off. The combination of mutation and selection can create new useful adaptations.
突然変異以上に進化に効くものがある。多くの突然変異のうち、ほんの少しは有益である。自然選択は有益な突然変異を保存し、有害な突然変異を死滅させる。突然変異と自然選択の組み合わせにより、新らしい有効な適応が生まれる。
Sometimes things do get built by accident. Many discoveries started out as accidents that people recognized uses for. Many other designs (accidental or not) have been selected against, that is, discarded. Design itself is an evolutionary process.
ときには、事故でものが生まれる。多くの発見は事故から始まる。偶然であれ必然であれ出現した多くのデザインは淘汰される。デザインそのものが進化過程である。- Experiments and genetic analysis show that mutations (plus selection) do account for new adaptations (Max 1999).
実験およびゲノム解析により、突然変異と自然選択は新たな適応を説明する[Max 1999]。
Links:
References:
- Max, E. E. 1999. (see above)
CB101.2:[backup]
Mutations only vary traits that are already there. They do not produce anything new.
突然変異は既存の性質を組み替えているだけである。新しいものは何も生まれない。
Source:
Watchtower Bible and Tract Society. 1985. Life--How Did It Get Here? Brooklyn, NY, p. 103.
Morris, Henry M. 1985. Scientific Creationism. Green Forest, AR: Master Books, 51.
Response:
- Variation of traits is production of novelty, especially where there was no variation before. The accumulation of slight modifications is a basis of evolution.
特徴のバリエーションがなかったところに、バリエーションがあると新規機能を生み出す。小さな変化の蓄積は進化の基本である。- Documentation of mutations producing new features includes the following:
新しい機能を生み出した突然変異についての文献は以下の通り:
- the ability of a bacterium to digest nylon (Negoro et al. 1994; Thomas n.d.; Thwaites 1985);
ナイロンを消化する細菌- adaptation in yeast to a low-phosphate environment (Francis and Hansche 1972; 1973; Hansche 1975);
リン酸塩が少ない環境に適応したイースト- the ability of E. coli to hydrolyze galactosylarabinose (Hall 1981; Hall and Zuzel 1980);
ガラクトシル アラビノースを加水分解できるE. coli- evolution of multicellularity in a unicellular green alga (Boraas 1983; Boraas et al. 1998);
単細胞の 緑藻類の多細胞へ進化- modification of E. coli's fucose pathway to metabolize propanediol (Lin and Wu 1984);
プロパンジオールを代謝するE. coliのフルコース経路の変化- evolution in Klebsiella bacteria of a new metabolic pathway for metabolizing 5-carbon sugars (Hartley 1984);
5-炭素糖を代謝する新しい代謝経路を持つクレブシエラ属細菌の進化
There is evidence for mutations producing other novel proteins:
新しいタンパク質を作る突然変異の証拠がある:
- Proteins in the histidine biosynthesis pathway consist of beta/alpha barrels with a twofold repeat pattern. These apparently evolved from the duplication and fusion of genes from a half-barrel ancestor (Lang et al. 2000).
ヒスチジン合成経路のタンパク質は、β/αバレルの2倍反復パターンから構成される。これらは明らかにハーフバレルの祖先から、遺伝子の重複と融合によって進化した[Lang et al. 2000]。
Laboratory experiments with directed evolution indicate that the evolution of a new function often begins with mutations that have little effect on a gene's original function but a large effect on a second function. Gene duplication and divergence can then allow the new function to be refined. (Aharoni et al. 2004)
実験室実験での方向性のある進化は、新しい機能の進化が、遺伝子の元の機能にほとんど影響せずに、第2の機能に大きな影響を与える突然変異から始まる。遺伝子重複と分岐は新しい機能を洗練していく[Aharoni et al. 2004]。- For evolution to operate, the source of variation does not matter; all that matters is that heritable variation occurs. Such variation is shown by the fact that selective breeding has produced novel features in many species, including cats, dogs, pigeons, goldfish, cabbage, and geraniums. Some of the features may have been preexisting in the population originally, but not all of them were, especially considering the creationists' view that the animals originated from a single pair.
進化が起きることに、変異の起源は重要ではない。重要なことは遺伝性の変異が起きることだ。そのような変異は、選択的育種によって新しい特徴を作れることが多くの種で示されている。たとえば、ネコやイヌやハトやキンギョやキャベツやフウロソウなどである。これらの特徴のいくつかは、集団にもともとあったものだが、動物が1つがいから始まったという創造論者の見方からするなら、それら変異のすべてが既存というわけではない。
Links:
- Max, Edward E. 1999. The evolution of improved fitness by random mutation plus selection.
- Musgrave, Ian, Steven Pirie-Shepherd, and Douglas Theobald. 2003. Apolipoprotein AI mutations and information.
- Thomas, Dave. n.d. Evolution and information: The nylon bug.
References:
- Aharoni, A., L. Gaidukov, O. Khersonsky, S. McQ. Gould, C. Roodveldt and D. S. Tawfik. 2004. The 'evolvability' of promiscuous protein functions. Nature Genetics [Epub Nov. 28 ahead of print]
- Boraas, M. E. 1983. Predator induced evolution in chemostat culture. EOS 64: 1102.
- Boraas, M. E., D. B. Seale, and J. E. Boxhorn. 1998. Phagotrophy by a flagellate selects for colonial prey: A possible origin of multicellularity. Evolutionary Ecology 12: 153-164.
- Francis, J. E. and P. E. Hansche. 1972. Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in S. cerevisiae. Genetics 70: 59-73.
- Francis, J. E. and P. E. Hansche. 1973. Directed evolution of metabolic pathways in microbial populations. II. A repeatable adaptation in Saccharomyces cerevisiae. Genetics 74: 259-265.
- Hall, B. G. 1981. Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry 20: 4042-4049.
- Hall, B. G. and T. Zuzel. 1980. Evolution of a new enzymatic function by recombination within a gene. Proceedings of the National Academy of Science USA 77(6): 3529-33.
- Hansche, P. E. 1975. Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae. Genetics 79: 661-674.
- Hartley, B. S. 1984. Experimental evolution of ribitol dehydrogenase. In: Microorganisms as Model Systems for Studying Evolution, R. P. Mortlock, ed., New York: Plenum, pp. 23-54.
- Lang, D. et al. 2000. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289: 1546-1550. See also: Miles, E. W. and D. R. Davies, 2000. On the ancestry of barrels. Science 289: 1490.
- Lin, E. C. C. and T. T. Wu. 1984. Functional divergence of the L-Fucose system in mutants of Escherichia coli. In: Microorganisms as Model Systems for Studying Evolution, R. P. Mortlock, ed., New York: Plenum, pp. 135-164.
- Negoro, S., K. Kato, K. Fujiyama and H. Okada. 1994. The nylon oligomer biodegradation system of Flavobacterium and Pseudomonas. Biodegradation 5: 185-194.
- Thomas. n.d. (see above).
- Thwaites, W. M. 1985. New proteins without God's help. Creation/Evolution 5(2): 1-3.
CB102:[backup]
Mutations are random noise; they do not add information. Evolution cannot cause an increase in information.
突然変異はランダムノイズであり、情報を加えない。進化は情報の増大を起こせない。
Source:
AIG, n.d. Creation Education Center.
Response:
- It is hard to understand how anyone could make this claim, since anything mutations can do, mutations can undo. Some mutations add information to a genome; some subtract it. Creationists get by with this claim only by leaving the term "information" undefined, impossibly vague, or constantly shifting. By any reasonable definition, increases in information have been observed to evolve. We have observed the evolution of
突然変異によってできることは、突然変異によって元にもどせるので、このような主張が出てくる理由が分からない。ある突然変異が情報をゲノムに加え、別の突然変異がそれを除去する。創造論者は情報という用語を定義しないか、思いきりあいまいにするか、意味を変え続けて、この主張をする。情報という用語についての、どんな合理的な定義でも、情報の増加は進化だと観察される。我々は以下のような進化を観察している:
- increased genetic variety in a population
集団内の遺伝的多様性の増加[Lenski 1995; Lenski et al. 1991]- increased genetic material
遺伝物質の増加[Alves et al. 2001; Brown et al. 1998; Hughes and Friedman 2003; Lynch and Conery 2000; Ohta 2003]- novel genetic material
新規な遺伝物質[Knox et al. 1996; Park et al. 1996]- novel genetically-regulated abilities
新規な遺伝的支配された能力[Prijambada et al. 1995]
If these do not qualify as information, then nothing about information is relevant to evolution in the first place.
これらが情報ではないというなら、そもそも情報と進化には何の関係も無いことになる。- A mechanism that is likely to be particularly common for adding information is gene duplication, in which a long stretch of DNA is copied, followed by point mutations that change one or both of the copies. Genetic sequencing has revealed several instances in which this is likely the origin of some proteins. For example:
情報を付加する特によくあるメカニズムは遺伝子重複である。この遺伝子重複では、DNAの長い区間がコピーされ、コピーの片方もしくは両方に点変異が起きる。ゲノムシーケンスには、タンパク質のいくつかの起源がこの遺伝子重複であると思われるインスタンスがある。たとえば:
- Two enzymes in the histidine biosynthesis pathway that are barrel-shaped, structural and sequence evidence suggests, were formed via gene duplication and fusion of two half-barrel ancestors
ヒスチジン生合成経路の2つの酵素は、バレル形状と構造的およびシーケンスの証拠から、これらが遺伝子重複によって形成され、2つの半バレル形状の先祖が融合したことを示している[Lang et al. 2000]。- RNASE1, a gene for a pancreatic enzyme, was duplicated, and in langur monkeys one of the copies mutated into RNASE1B, which works better in the more acidic small intestine of the langur.
膵酵素の遺伝子であるRNASE1はコピーされ、ヤセザルではコピーのひとつが突然変異してRNASE1Bになり、ヤセザルの酸性な小腸でうまく働けるようになった[Zhang et al. 2002]。- Yeast was put in a medium with very little sugar. After 450 generations, hexose transport genes had duplicated several times, and some of the duplicated versions had mutated further.
糖分がほとんどない培地にイースト菌が置かれた。450世代後に、六炭糖輸送遺伝子が複数回にわたってコピーされ、コピーのいくつか、さらに突然変異した[Brown et al. 1998]。
The biological literature is full of additional examples. A PubMed search (at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) on "gene duplication" gives more than 3000 references.
生物学の文献には、このような例に満ちている。PubMed searchで"gene duplication"(遺伝子重複)を検索すれば3000件以上ヒットする。- According to Shannon-Weaver information theory, random noise maximizes information. This is not just playing word games. The random variation that mutations add to populations is the variation on which selection acts. Mutation alone will not cause adaptive evolution, but by eliminating nonadaptive variation, natural selection communicates information about the environment to the organism so that the organism becomes better adapted to it. Natural selection is the process by which information about the environment is transferred to an organism's genome and thus to the organism
Shannon-Weaver情報理論によれば、ランダムノイズは情報を最大化する。これはワードゲームだけの話ではない。突然変異によって集団に加えられたランダムな変異に、選択が働く。突然変異だけでは適応的な進化は起きない。非適応的な変異を除去することで、自然選択は環境と生物の間の情報交換を行い、それにより生物がより適応できるようになる。自然選択は情報が環境から生物のゲノム(従って生物そのもの)へ転送される過程である[Adami et al. 2000]。- The process of mutation and selection is observed to increase information and complexity in simulations
突然変異と選択の過程は、情報と複雑さの増加であるとシミュレーションにおいて観察されている[Adami et al. 2000; Schneider 2000]。
Links:
- Max, Edward E., 1999. The evolution of improved fitness by random mutation plus selection.
- Musgrave, Ian, 2001. The Period gene of Drosophila.
References:
- Adami et al., 2000. (see below)
- Alves, M. J., M. M. Coelho and M. J. Collares-Pereira, 2001. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111(1-3): 375-385.
- Brown, C. J., K. M. Todd and R. F. Rosenzweig, 1998. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology and Evolution 15(8): 931-942.
- Hughes, A. L. and R. Friedman, 2003. Parallel evolution by gene duplication in the genomes of two unicellular fungi. Genome Research 13(5): 794-799.
- Knox, J. R., P. C. Moews and J.-M. Frere, 1996. Molecular evolution of bacterial beta-lactam resistance. Chemistry and Biology 3: 937-947.
- Lang, D. et al., 2000. Structural evidence for evolution of the beta/alpha barrel scaffold by gene duplication and fusion. Science 289: 1546-1550. See also Miles, E. W. and D. R. Davies, 2000. On the ancestry of barrels. Science 289: 1490.
- Lenski, R. E., 1995. Evolution in experimental populations of bacteria. In: Population Genetics of Bacteria, Society for General Microbiology, Symposium 52, S. Baumberg et al., eds., Cambridge, UK: Cambridge University Press, pp. 193-215.
- Lenski, R. E., M. R. Rose, S. C. Simpson and S. C. Tadler, 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. American Naturalist 138: 1315-1341.
- Lynch, M. and J. S. Conery, 2000. The evolutionary fate and consequences of duplicate genes. Science 290: 1151-1155. See also Pennisi, E., 2000. Twinned genes live life in the fast lane. Science 290: 1065-1066.
- Ohta, T., 2003. Evolution by gene duplication revisited: differentiation of regulatory elements versus proteins. Genetica 118(2-3): 209-216.
- Park, I.-S., C.-H. Lin and C. T. Walsh, 1996. Gain of D-alanyl-D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 35: 10464-10471.
- Prijambada, I. D., S. Negoro, T. Yomo and I. Urabe, 1995. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Applied and Environmental Microbiology 61(5): 2020-2022.
- Schneider, T. D., 2000. Evolution of biological information. Nucleic Acids Research 28(14): 2794-2799.
- Zhang, J., Y.-P. Zhang and H. F. Rosenberg, 2002. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genetics 30: 411-415. See also: Univ. of Michigan, 2002, How gene duplication helps in adapting to changing environments.
Further Reading:
- Adami, C., C. Ofria and T. C. Collier, 2000. Evolution of biological complexity. Proceedings of the National Academy of Science USA 97(9): 4463-4468. http://www.pnas.org/cgi/content/full/97/9/4463 (technical)
- Hillis, D. M., J. J. Bull, M. E. White, M. R. Badgett, and I. J. Molineux. 1992. Experimental phylogenetics: generation of a known phylogeny. Science 255: 589-92. (technical)
CB102:[backup]In an interview in 1997, Richard Dawkins was asked to "give an example of a genetic mutation or an evolutionary process which can be seen to increase the information in the genome." Apparently unable to answer, he paused a long time and finally responded by changing the subject.
1997年のインタビューで、Richard Dawkinsは「遺伝的突然変異あるいは進化過程で、ゲノムの情報が増えた例」を問われて、長く黙った後、話題を変えた。
Source:
AIG, 1998. Skeptics choke on Frog: was Dawkins caught on the hop?
Keziah Films, "From a Frog to a Prince" (video)
Response:
- According to Dawkins, he paused because the question revealed that the interviewers were creationists, that he had been duped about their motives. He paused to think about how to handle them, and the change of subject occurred due to the several minutes when he confronted them being omitted from the video (Dawkins 2003).
Dawkinsによれば、黙ったのは、インタビューアーが創造論者でありながら、意図を隠していることがわかったからだ。Dawkinsは黙ってどう対処するか考え、数分間にわたって彼らと敵対したため、話題が変えられたが、その部分がビデオからカットされた。- The question is equivalent to asking how complexity could evolve, which Dawkins has covered in at least four books (The Blind Watchmaker, River Out of Eden, Climbing Mount Improbable, and A Devil's Chaplain). He has answered the question at great length.
この質問は、複雑さがどうやって進化したかを質問したのと等価であり、Dawkinsは少なくとも4冊の本で応えている[盲目の時計職人, Climbing Mount Improbable, 遺伝子の川, 悪魔に仕える牧師]。Dawkinsはかなり分量で応えている。- The ability of a single person to answer a question is largely irrelevant. The scientific literature is rife with examples of information increasing.
ひとりの人間が質問に答える能力で論じるのは何の意味も無い。科学文献は情報の増加について満載である。
References:
Further Reading: